Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1359475, 2024.
Article in English | MEDLINE | ID: mdl-38562927

ABSTRACT

Background: After licensing of the protein-based vaccine NVX-CoV2373, three technically different vaccines against the SARS-CoV-2 became available for application to the human population - and for comparison of efficacies. Methods: We here recruited 42 study participants who had obtained one initial dose of NVX-CoV2373 and analyzed their immune responses in contrast to 37 study participants who had obtained either the vector vaccine AZD1222 or the mRNA vaccine BNT162b2 a year earlier. 32 participants also donated blood before first vaccination to serve as a vaccine-naive control. In detail, we investigated and quantified at day 21 and approximately six months after primary immunization the amounts of vaccine-specific antibodies produced, their neutralization capacity, their quality in terms of binding different epitopes and their efficiency in inducing various isotypes. Cellular immunity and intracellular cytokine production following in vitro re-stimulation with BNT162b2 vaccine was analyzed via ELISpot or via flow cytometry. Results: Our results show that even though vaccination including the mRNA vaccine yielded best results in almost any aspect of antibody levels and binding efficiency, the neutralization capacities against the wild-type Wuhan strain and the Omicron BA.1 variant early and at six months were comparable among all three vaccination groups. As for the T cells, we observed a prevailing CD8 response at three weeks which turned into a predominant CD4 memory at six months which has not yet been observed for AZD1222 and BNT162b2. While additional infection with SARS-CoV-2 resulted in a boost for the humoral response, T cell memory appeared rather unaffected. Conclusion: Whether any of these differences translate into real world protection from infection, mitigation of severe disease courses and prevention of long/post COVID will need to be investigated in the future.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , mRNA Vaccines , Humans , ChAdOx1 nCoV-19 , Immunity, Cellular , RNA, Messenger/genetics
2.
J Adv Res ; 57: 181-196, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37391038

ABSTRACT

INTRODUCTION: Skin cancer is often fatal, which motivates new therapy avenues. Recent advances in cancer treatment are indicative of the importance of combination treatments in oncology. Previous studies have identified small molecule-based therapies and redox-based technologies, including photodynamic therapy or medical gas plasma, as promising candidates to target skin cancer. OBJECTIVE: We aimed to identify effective combinations of experimental small molecules with cold gas plasma for therapy in dermato-oncology. METHODS: Promising drug candidates were identified after screening an in-house 155-compound library using 3D skin cancer spheroids and high content imaging. Combination effects of selected drugs and cold gas plasma were investigated with respect to oxidative stress, invasion, and viability. Drugs that had combined well with cold gas plasma were further investigated in vascularized tumor organoids in ovo and a xenograft mouse melanoma model in vivo. RESULTS: The two chromone derivatives Sm837 and IS112 enhanced cold gas plasma-induced oxidative stress, including histone 2A.X phosphorylation, and further reduced proliferation and skin cancer cell viability. Combination treatments of tumor organoids grown in ovo confirmed the principal anti-cancer effect of the selected drugs. While one of the two compounds exerted severe toxicity in vivo, the other (Sm837) resulted in a significant synergistic anti-tumor toxicity at good tolerability. Principal component analysis of protein phosphorylation profiles confirmed profound combination treatment effects in contrast to the monotherapies. CONCLUSION: We identified a novel compound that, combined with topical cold gas plasma-induced oxidative stress, represents a novel and promising treatment approach to target skin cancer.


Subject(s)
Skin Diseases , Skin Neoplasms , Animals , Mice , Humans , Skin Neoplasms/drug therapy , Histones , Medical Oncology , Combined Modality Therapy , Disease Models, Animal
3.
Br J Cancer ; 129(5): 869-883, 2023 09.
Article in English | MEDLINE | ID: mdl-37460712

ABSTRACT

BACKGROUND: Reactive oxygen species (ROS) are implicated in cancer therapy and as drivers of microenvironmental tumour cell adaptations. Medical gas plasma is a multi-ROS generating technology that has been shown effective for palliative tumour control in head and neck cancer (HNC) patients before tumour cells adapted to the oxidative stress and growth regressed fatally. METHODS: In a bedside-to-bench approach, we sought to explore the oxidative stress adaptation in two human squamous cell carcinoma cell lines. Gas plasma was utilised as a putative therapeutic agent and chronic oxidative stress inducer. RESULTS: Cellular responses of single and multiple treated cells were compared regarding sensitivity, cellular senescence, redox state and cytokine release. Whole transcriptome analysis revealed a strong correlation of cancer cell adaption with increased interleukin 1 receptor type 2 (IL1R2) expression. Using magnetic resonance imaging, tumour growth and gas plasma treatment responses of wild-type (WT) and repeatedly exposed (RE) A431 cells were further investigated in a xenograft model in vivo. RE cells generated significantly smaller tumours with suppressed inflammatory secretion profiles and increased epidermal growth factor receptor (EGFR) activity showing significantly lower gas plasma sensitivity until day 8. CONCLUSIONS: Clinically, combination treatments together with cetuximab, an EGFR inhibitor, may overcome acquired oxidative stress resistance in HNC.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , ErbB Receptors , Reactive Oxygen Species , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Cetuximab/therapeutic use , Oxidative Stress , Cell Line, Tumor , Antineoplastic Agents/therapeutic use
4.
Molecules ; 27(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35566381

ABSTRACT

Indirubin was identified as an active component of Danggui Longhui Wan, an herbal mixture used in traditional Chinese medicine, and showed anticancer activity in clinical trials in patients with chronic leukemia. Investigations on the mechanisms of antitumor action of indirubins have mainly focused on the indirubin derivative indirubin-3'-monoxime (I3M). Meanwhile, antiproliferative and cytotoxic properties on cancer cells have also been demonstrated for several synthetic indirubin N-glycosides. In the present study, we demonstrate cytotoxic activity of the thia-analogous indirubin N-glycosides KD87 (3-[3'-oxo-benzo[b]thiophen-2'-(Z)-ylidene]-1-(ß-d-glucopyranosyl)-oxindole) and KD85 (3-[3'-oxo-benzo[b]thiophen-2'-(Z)-ylidene]-1-(ß-d-mannopyranosyl)-oxindole) against melanoma and squamous cell carcinoma cells as well as lung cancer and glioblastoma cells. The advanced state of preclinical studies on the effects of indirubins conducted to date underscores the need for pharmacokinetic data from cellular, animal, and human studies for which reliable quantification is required. Therefore, a sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the simultaneous measurement of KD87, KD85, and I3M in plasma and cell culture medium. Experimental conditions for sample preparation were optimized for human plasma protein precipitation and liquid-liquid extraction from plasma and cell culture medium. The methods were successfully validated in accordance with the U.S. Food and Drug Administration Bioanalytical Method Validation and evaluated for selectivity, sensitivity, matrix effect, recovery, carryover, calibration curve linearity, accuracy, precision, and stability. The applicability of the methods was demonstrated by the determination of KD87 in mouse plasma after prior intraperitoneal administration to mice.


Subject(s)
Antineoplastic Agents , Glycosides , Animals , Antineoplastic Agents/pharmacokinetics , Cell Culture Techniques , Chromatography, Liquid/methods , Humans , Indoles , Mice , Oximes , Oxindoles , Reproducibility of Results , Tandem Mass Spectrometry/methods
5.
Animals (Basel) ; 11(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34438613

ABSTRACT

Subcutaneous tumor models in mice are the most commonly used experimental animal models in cancer research. To improve animal welfare and the quality of scientific studies, the distress of experimental animals needs to be minimized. For this purpose, one must assess the diagnostic ability of readout parameters to evaluate distress. In this study, we evaluated different noninvasive readout parameters such as body weight change, adjusted body weight change, faecal corticosterone metabolites concentration, burrowing activity and a distress score by utilising receiver operating characteristic curves. Eighteen immunocompromised NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice were used for this study; half were subcutaneously injected with A-375 cells (human malignant melanoma cells) that resulted in large tumors. The remaining mice were inoculated with SCL-2 cells (cutaneous squamous cell carcinoma cells), which resulted in small tumors. The adjusted body weight and faecal corticosterone metabolites concentration had a high diagnostic ability in distinguishing between mice before cancer cell injection and mice bearing large tumors. All other readout parameters had a low diagnostic ability. These results suggest that adjusted body weight and faecal corticosterone metabolites are useful to depict the distress of mice bearing large subcutaneous tumors.

6.
Cancers (Basel) ; 13(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069689

ABSTRACT

BACKGROUND: Skin cancer is the most frequent cancer worldwide and is divided into non-melanoma skin cancer, including basal cell carcinoma, as well as squamous cell carcinoma (SCC) and malignant melanoma (MM). METHODS: This study evaluates the effects of cold atmospheric pressure plasma (CAP) on SCC and MM in vivo, employing a comprehensive approach using multimodal imaging techniques. Longitudinal MR and PET/CT imaging were performed to determine the anatomic and metabolic tumour volume over three-weeks in vivo. Additionally, the formation of reactive species after CAP treatment was assessed by non-invasive chemiluminescence imaging of L-012. Histological analysis and immunohistochemical staining for Ki-67, ApopTag®, F4/80, CAE, and CD31, as well as protein expression of PCNA, caspase-3 and cleaved-caspase-3, were performed to study proliferation, apoptosis, inflammation, and angiogenesis in CAP-treated tumours. RESULTS: As the main result, multimodal in vivo imaging revealed a substantial reduction in tumour growth and an increase in reactive species after CAP treatment, in comparison to untreated tumours. In contrast, neither the markers for apoptosis, nor the metabolic activity of both tumour entities was affected by CAP. CONCLUSIONS: These findings propose CAP as a potential adjuvant therapy option to established standard therapies of skin cancer.

7.
Front Immunol ; 11: 579475, 2020.
Article in English | MEDLINE | ID: mdl-33117382

ABSTRACT

Septic arthritis is a medical emergency associated with high morbidity and mortality, yet hardly any novel advances exist for its clinical management. Despite septic arthritis being a global health burden, experimental data uncovering its etiopathogenesis remain scarce. In particular, any interplay between septic arthritis and preceding joint diseases are unknown as is the contribution of the synovial membrane to the onset of inflammation. Using C57BL/6 mice as a model to study sepsis, we discovered that Group A Streptococcus (GAS) - an important pathogen causing septic arthritis - was able to invade the articular microenvironment. Bacterial invasion resulted in the infiltration of immune cells and detrimental inflammation. In vitro infected fibroblast-like synoviocytes induced the expression of chemokines (Ccl2, Cxcl2), inflammatory cytokines (Tnf, Il6), and integrin ligands (ICAM-1, VCAM-1). Apart from orchestrating immune cell attraction and retention, synoviocytes also upregulated mediators impacting on bone remodeling (Rankl) and cartilage integrity (Mmp13). Using collagen-induced arthritis in DBA/1 × B10.Q F1 mice, we could show that an inflammatory joint disease exacerbated subsequent septic arthritis which was associated with an excessive release of cytokines and eicosanoids. Importantly, the severity of joint inflammation controlled the extent of bone erosions during septic arthritis. In order to ameliorate septic arthritis, our results suggest that targeting synoviocytes might be a promising approach when treating patients with inflammatory joint disease for sepsis.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Infectious/immunology , Inflammation/immunology , Joints/immunology , Streptococcal Infections/immunology , Streptococcus/physiology , Synoviocytes/physiology , Animals , Bone Remodeling , Cells, Cultured , Cytokines/metabolism , Eicosanoids/metabolism , Humans , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , RANK Ligand/metabolism , Risk
8.
BMC Gastroenterol ; 20(1): 260, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32762707

ABSTRACT

BACKGROUND: Several DNA viruses are highly suspicious to have oncogenic effects in humans. This study investigates the presence of potentially oncogenic viruses such as SV40, JCV, BKV and EBV in patient-derived colorectal carcinoma (CRC) cells typifying all molecular subtypes of CRC. METHODS: Sample material (gDNA and cDNA) of a total of 49 patient-individual CRC cell lines and corresponding primary material from 11 patients, including normal, tumor-derived and metastasis-derived tissue were analyzed for sequences of SV40, JVC, BKV and EBV using endpoint PCR. In addition, the susceptibility of CRC cells to JCV and BKV was examined using a long-term cultivation approach of patient-individual cells in the presence of viruses. RESULTS: No virus-specific sequences could be detected in all specimens. Likewise, no morphological changes were observed and no evidence for viral infection or integration could be provided after long term CRC cell cultivation in presence of viral particles. CONCLUSIONS: In summary, the presented data suggest that there is no direct correlation between tumorigenesis and viral load and consequently no evidence for a functional role of the DNA viruses included into this analysis in CRC development.


Subject(s)
BK Virus , Colorectal Neoplasms , JC Virus , Polyomavirus Infections , Tumor Virus Infections , BK Virus/genetics , Cell Line , DNA Viruses , DNA, Viral , Humans , JC Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...